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» Summit & Sierra (BM Power9, NVIDIA
GV100)

> 2M cores, 143 PFLOPS, 9 MW
- Performance: 70 GFLOPS/core :
- Efficiency: 15.8 GFLOPS/W, 4.5 W/core Summit

» SunWay TaihuLight (Chinese)
> 10M cores, 93 PFLOPS, 15 MW
- Performance: 10 GFLOPS/core
- Efficiency: 6.2 GFLOPS/W, 1.5 W/core SunWay TaihuLight

» Tianhe-2 (Xeon ES5, Phi)
> 3M cores, 33 PFLOPS, 17MW
- Performance: 10 GFLOPS/core
- Efficiency: 1.96 GFLOPS/W, 5.1W/core

Tianhe-2



Problem: Just scaling not a viable
solution to reach ExaFlop

¢ Energy Efficiency
> 16 GFLOPS/W = 1 EFLOPS/63 MW (should go down to ~20MW)

d Cost & Space
- 16 GFLOP/ core = 1 EFLOP / 14 Mcores

d Scalability & Management
- Manage 14 Mcores

d Resiliency




HPC Approach: Improve Technology,
Architecture, Software

v Technology
> Transistor shrinking (TSMC 7 nm)
> Bring transistors closer: 3D technology

v' Architecture
- Reduce data movements
- Multi-level memory: scratchpad, cache, Flash
> Increase parallelism
- Von Neumann vs Dataflow Engines

v Software
- Programming Languages

- System Software/Runtime Systems
_Tune applications




Common Architecture Approach:
Use of Accelerators

Accelerators are based on

v’ parallel processing

v' synchronized accesses/processing
v’ locality

v

» Many-core
o |ntel Xeon-Phi
o KALRAY MPPA

» GPUs
o NVIDIA
o AMD
o ARM

» Dataflow Engine
o FPGASs

- Altera Tegra X1
- Xilinx




CPUs vs. GPUs vs. Dataflow/FPGA

Scalar processing

SIMD processing (e.g. GPU)
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Dataflow graph of a program mapped directly in HW



Why are FPGA’s so energy-efficient?

» Customized to the needs of the application

v’ Instructions are part of the FPGA logic = no IF, ID stages
v’ Custom EX stage g
v Optimized data movements b=
v Optimized control logic
v' Loop unrolling in HW




Dataflow Architectures

Intel Configurable Spatial Accelerator (CSA)
- Static HW, many CSA configurations

(intel)
Intel “Two Orders of Magnitude Faster than GPGPU by 2020":

- Deep Learn. Inference Accel. (DLIA) with Altera Arria 10
- Broadwell Xeon with Arria 10 GX

EC2 F1 instance with Xilinx webservices™
> Up to 8xUltraScale+ VU9P per instance

IBM SuperVessel OpenPOWER development cloud using X|I|nx = ——
SDAccel == =T=

Microsoft Bing with Altera Stratix V
FPGA networking for Azure cloud

Xilinx SDAccell on Nimbix cloud W

Xilinx OpenStack support
> Libraries: DNN, GEMM, HEVC Decoder & Encoder, etc.

Be Microsoft

openstack”




Still not used extensively - Why? Low
Programmability

» Programmability
- Huge Design Space = hard to optimize application
- Many FPGAs and choices
- When/Where/What/How to accelerate
- SW and HW skills required
» Compile/Synthesis time
> Several hours to synthesize/PnR
- Long time to program

» FPGA Size

- FPGA Size directly affects speed and number of
accelerated tasks

If your system is hard to program it,
it really doesn’t matter how fast it is.
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What should we do?

Help the programmer!

» Improve Architecture €S
> Multi-FPGA support .Q‘ )‘
> Multi-user support/shared resources =
> OS support (device drivers)
> Runtime System

- Dynamic Scheduling
- Dynamic reconfiguration

» Improve Programming Language
> Support of OpenCL 2.0

- Shared virtual memory

- Pipes

- Dynamic Parallelism, Atomics, etc.
» Improve CAD Tools
> Intel FPGA SDK for OpenCL (supports part of OpenCL 2.0)
> Xilinx Vivado HLS (supports OpenCL 1.1)
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Traditional OpenCL Data Movement

System

Host .« ighcl ‘Global Memory
PvC|e —
‘ 4
DMA Kernel DMA
. Memory ‘
FPGA " Controller
Y

DDR Device Memory

» Global Memory of Accelerator is Independent
from Host/System Memory

» High-Latency PCle




OpenCL 2.0: Virtual Shared Memory
e
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» Cache Coherency

v ARM CCI (Ultrascale+)
> Xilinx CCIX (next generation of Ultrascale+)

> IBM CAPI (Intel QPI/CAPI)
» 10 MMU

v"ARM SMMU (Ultrascale+)
@ Coherent Cache on the FPGA (Ultrascale+)?
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UNIMEM: Remote Coherent Accesses

Ultrascale+ MPSOC Ultrascale+ MPSOC
—— ]
I“t «— CCI/MMU|+— azra'r:g?y Host <« CCI/MMU|«— I\i:ﬁ:gfy
? A

\ 4

FPGA L {Kernel 0 \ l Ker‘lel ] l FPGA

/ Globalvlnterconnect (JNIMEM)
" 448GB
e » UNIMEM Architecture
etc. v Global Address Space (PGAS)
Address Map v" Direct (load/store) remote accesses

v Coherent accesses
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Multiple FPGAs

Node O (Coherence Island) Node 1 (Coherence Island)
] hared - Shared
Hogt  «—/CCI/MMU~ @emory fost  [—{CCI/MMUl~  ytemory

*

FPGA ‘ Kernel O | l Kernel 1 I FPGA

Global Interconnect (UNIMEM)

» Access any FPGA in the System

v Remote Kernel calls
v Remote Memory Accesses
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Resource sharing

Node O Node 1 Node 2
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Global Interconnect (UNIMEM)

» Virtualization Block
- Receives Kernel Execution command from any Node
> Schedules commands and executes them locally
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Fine-grain sharing

Node O

-

Global Interconnect (UNIMEM)

+«—SWHW— S Reconfigurable
Virtualization Accelérator
done Parallel

____

execution
in HW

Kernel
Calll

Scheduler
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Dynamic Reconfiguration:
Challenges and Potential Solutions

o

Synthesis/PnR too slow > Synthesis at compile time

o

Bitstream per FPGA per location > Improve Placement

Prefetching
GPU/CPU as alternative

Limited FPGA size > Improve Architecture (UNIMEM)

o

Reconfiguration is slow

(0]

(0]

Limited tool support j> Standardization/ Improve Tools

o When/what/where to reconfigure > Runtime System
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Physical Implementation

)
FPGA FPGA
HW HW Context HW Context
WGO Switching Switching
A Ar
HW \ 4 \ 4
WGl Reconfigurable Reconfigurable
Accelerator Accelerator
HW AX| Slot0 Slot1 Slot2 AX| SlotO Slot1 Slot2
WGO | WGO | WGT WG2 WGT
Accelerator
. Library |

» Resource-aware Reconfigurable Accelerator
Floorplanning and Backend Tool
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ECOSCALE Recofiguration

HW
WGO

HW
WGI1

HW
WG2

Accelerator

\Library )

Slot 0 Slot 1 - Slot 2
HW H) HW
WGO W( WG2
]
Slot 3 Slot 4 Slot 5
HW HW
WG1 WG1
Slot 6 Y Slot 7 Slot 8
HW
WG2
||

» Acceleration Library
» WG’s of different size
» Relocation

- Defregmentation
ove logic closer to data
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The ExaNeSt QFDB

» Quad-FPGA Daughter Board

- Designed by sister project | 'S | 2w
ExaNeSt .

Foa i
> 4x Xilinx Zynq Ultrascale+

FPGAS
> 4x16 = 64GB DDR

> Extensive High Speed
Connectivity

- Complex & dense PCB

FPGA
XCZU9EG-ffvc900

12 LVDS

16 GByte Base
DDR4 32MB Connector
SODIMM QsplI 2
10GTH
%64 ? RGMII
_ 121VDS
< »  ‘Network’ FPGA 2x UART

\
2GTH XCZU9EG-ffvc900

o FPGA ~ . | ‘Storage’ FPGA | 4PS-GTR j.2
] 6 Iaye s, ] 2 OX ] 3 O mm, ] 6 XCZU9EG-ffvc900 oTH > XCZU9EG-ffvc900 5(1“‘2‘2;63
yte
power sensors —
12 LVDS
* 64 ¢ ¢ '# 64
16 GByte 16 GByte
DDR4 S 32MB DDR4
SODIMM e QsPl SODIMM
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The ECOSCALE BaseBoard

Cables
=

Conn.

e rall
A0

g I
o \
8 | < >
steboard
» Offers a densely QFDB-populated

prototype

» Provides many option for intra- and
inter—-board connectivity
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Fully Populated Baseboard
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Conclusion

» Common HPC Approach
< Use accelerators: GPUs vs FPGAs

» FPGAs main advantage

& Energy Efficiency
¢ But hard to be used by programmers
- Limited FPGA Size = Sharing of resources
- Reconfiguration = Optimize tools/Standardization
- Runtime system which automates/coordinates actions

» UNILOGIC architecture and ECOSCALE
firmware
& Improved Programmability
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